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Abstract
We present a dynamical analysis of a classical billiard chain—a channel with
parallel semi-circular walls, which can serve as a model for a bent optical fibre.
An interesting feature of this model is the fact that the phase space separates
into two disjoint invariant components corresponding to the left and right uni-
directional motions. Dynamics is decomposed into the jump map, a Poincaré
map between the two ends of a basic cell, and the time function, travelling time
across a basic cell of a point on a surface of section. The jump map has a mixed
phase space where the relative sizes of the regular and chaotic components
depend on the width of the channel. For a suitable value of this parameter, we
can have almost fully chaotic phase space. We have studied numerically the
Lyapunov exponents, time auto-correlation functions and diffusion of particles
along the chain. As a result of the singularity of the time function, we obtain
marginally normal diffusion after we subtract the average drift. The last result
is also supported by some analytical arguments.

PACS numbers: 05.45.Pq, 05.45.Gg, 05.60.Cd

1. Introduction: uni-directional billiard channels

The discussion of classical and quantum dynamics of spatially extended billiard chains, either
with periodicity or disorder, is a promising field of research with a variety of direct applications,
e.g. in nanophysics, fibre optics, electromagnetic cavities, etc. It is fair to say that studies
in spatially extended billiard systems have been underrepresented as compared to the vast
amount of work that has been dedicated to billiards on bounded domains. Nevertheless, one
has to mention several basic results in these types of systems. First, one can study the escape
rates from finite portions of an infinite billiard chain, such as the Lorentz channel [1]. Second,
one can study classical transport properties, such as diffusion and transport of heat along the
billiard chains in order to understand the dynamical (microscopic) origin of the macroscopic
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q=0.5
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Figure 1. A schematic picture of the serpent billiard model (a) with one basic cell put in a
rectangular frame, and index n labelling the consecutive cells. A typical trajectory is indicated
in (b).

transport laws [2–4]. Third, one can study the relation between deterministic diffusion in a
classical billiard chain, Anderson-like dynamical localization in the corresponding quantum
chain and the nature of its spectral fluctuations [5–7]. And fourth, there is an interesting effect
of localization transition in the presence of correlated disorder, which has been studied in the
case of billiard chains both theoretically [8] and experimentally [9].

In this paper, we discuss a class of classical billiard channels with an unusual and distinct
dynamical property, namely uni-directionality of the ray motion along the chain. Specifically,
we focus our study on a particular billiard chain—a channel with parallel semi-circular walls
which we name the serpent billiard. The billiard under discussion is built as a periodic
composition of semi-circular rings of radii q ∈ [0, 1) and 1, for the inner and outer circular
arcs, respectively. The geometry of this billiard chain and an illustration of the ray dynamics
are shown in figure 1. By construction, the phase space separates into two disjoint invariant
components corresponding to the left and right uni-directional motions, corresponding to two
different signs of the angular momentum as defined with respect to the origin (centre) of
the ring of the current billiard cell. Within each cell the angular momentum is conserved.
Further, it is obvious that upon the transition between one cell and another the sign of angular
momentum, as calculated with respect to the centres of adjacent cells, remains unchanged.
Therefore, particles travelling from left to right initially will do so forever and will thus
never be able to change the direction of travel, and similarly for the motion in the opposite
direction, so that these two motions constitute two disjoint invariant halves of the phase space.
Nonetheless, as we shall show below, the dynamics inside each invariant half of the phase
space may be (practically) totally chaotic and ergodic.

We note that this property of uni-directionality can be proved for a more general billiard
channel which is bounded by an arbitrary pair of parallel smooth curves. Namely, it is easy
to prove the following observation.

Let the billiard motion in R
2 be bounded by two smooth C1 curves Cj , j = 1, 2, with

natural parametrizations s → �rj (s). The curves C1 and C2 should never intersect and
they should be parallel in the following sense: for any s ∈ R, a line L(s) intersecting C1

perpendicularly at �r1(s) should also intersect C2 perpendicularly, say at point �r2(τ ) defining
a map τ = σ(s). The function σ : R → R should be a monotonically increasing invertible
function, i.e. σ ′(s) > 0 for all s, or in other words, the lines L(s) should not intersect each
other inside the billiard region.

Then the billiard motion is uni-directional, i.e. the sign of the tangential velocity
component �v · (d/ds)�rj (s) stays constant for all collision points of an arbitrary trajectory.

To prove this observation, it is sufficient to consider two subsequent collisions of a segment
of trajectory with a velocity of unit length |�v| = 1. We may assume the first collision to take
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Figure 2. The schematic diagram shows two possible cases (a) and (b) of subsequent collisions
needed for the proof of uni-directionality.

place at �r1(s) ∈ C1 and write sin α := �v · (d/ds)�r1(s) > 0. Then we consider two possible
cases.

(a) The next collision happens on the curve C2, say at the point �r2(τ ). Then the angle of
incidence is again written as sin β := �v · (d/dτ)�r2(τ ). α and β are the angles between
the segment of the trajectory and lines L(s) and L(σ−1(τ )), respectively. Since the latter
two do not cross inside the billiard region, it follows that the sign of α and β should be
the same (positive). We may have β = 0 only if α = 0, i.e. when the motion takes place
along L(s) which is a periodic orbit (see figure 2(a)).

(b) Another possibility is that the next collision happens with the same curve, i.e. at �r1(s
′).

Writing sin β = �v · (d/ds)�r1(s
′), we again observe that the sign of the angles α and β

should be the same (positive), considering that the other ends of the lines L(s) and L(s ′)
at points �r2(σ (s)) and �r2(σ (s ′)) should lie on the same side of the trajectory segment since
the latter should not cross C2 (see figure 2(b)).

Thus, we have proved that L(s) is a family of marginally stable periodic orbits, of
vanishing overall measure, which separates the phase space of the billiard into two halves
of uni-directional motions. It is perhaps worth stressing that the conditions of parallelism
as expressed in the statement also imply that the width of the channel should be constant,
|�r1(s) − �r2(σ (s))| = const.

We should note that a detailed understanding of the dynamics of such a class of
billiards may have useful applications, particularly in fibre optics, electromagnetic waveguide
propagation, etc. In the following sections, we shall concentrate on the dynamics of the
specific serpent billiard model, which we shall analyse in terms of a special version of the
Poincaré map, the so-called jump map. Then, we shall describe analytically and numerically
the average transport velocity, deterministic diffusion and correlation functions of the model.

2. Dynamics of the serpent billiards

Let us consider the Hamiltonian dynamics of a particle in a serpent billiard channel. We
are considering a classical point particle with a fixed velocity of unit size. Due to the uni-
directionality of the motion, as shown above, we may freely choose to consider only forward
propagation—in the positive direction of the x-axis—as shown in the example of figure 1(b).
The forward dynamics of the billiard can be written in terms of dynamics within a given basic
cell and a transition to an adjacent basic cell. In order to fully describe the dynamics, we only
need to know a Poincaré-like transformation which maps coordinates of an entry into a cell to
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the coordinates of an exit and the time spent between entry and exit (the entry into an adjacent
cell). Thus, we formulate the dynamics of our billiard chain in terms of a jump map model
[10]. We shall define the jump map more precisely below.

Let the particle enter the basic cell on the left end at the initial position x and with the
horizontal velocity component vx and travel to the right end where it exits at the position x ′

and velocity v′
x . To clarify the notation, we introduce a phase space entry section SL and an

exit section SR

SL = {(x, vx) : x ∈ [−1,−q], vx ∈ [−1, 1]} SR = {(x, vx) : x ∈ [q, 1], vx ∈ [−1, 1]}.
The dynamical mapping of an entry point to an exit point shall be denoted by G : SL → SR,

(x ′, v′
x) = G(x, vx). (1)

The map G can be expressed analytically since the billiard in the circular ring is integrable.
Since the lengthy expression is not very illuminating, we give its explicit form in the appendix.
In order to apply G again, we have to transform the current exit position x ′ to the entry position
of the next basic cell by a map S : SR → SL

(x ′′, v′′
x ) = S(x ′, v′

x) = (x ′ − 1 − q, v′
x).

With this transformation the conservation of angular momentum around the centre of the
current cell is broken which implies non-integrability of the model. We should mention that
our serpent billiard falls into the category of semi-separable systems [11]. The propagation of
a particle from one basic cell to another can then be stated in terms of a single map F : SL → SL

F = S ◦ G. (2)

We will refer to F as a jump or Poincaré map and to the phase space SL as a surface of
section (SOS). In terms of the map F, the dynamics over the whole channel is decomposed
into spatially equidistant snapshots. In order to maintain the whole physical information about
the dynamics, we have to introduce the time function T : SL → R

+, i.e. T (x) measures the
time needed by a particle to travel from the entry point x = (x, vx) ∈ SL to the other end of
the basic cell. The pair (F, T ) now represents the jump model corresponding to our billiard
channel. Again, the time function T (x) could be written explicitly, though with a cumbersome
expression, so we put it in the appendix. However, we should note that numerical routines for
computing the map F and the function T are very elementary and efficient.

As a useful illustration of the gross dynamical features of the model, we plot in figure 3
the phase portraits of the Poincaré-jump map F for different values of the parameter q. We
observe that the jump map has, in general, a mixed phase space with chaotic and regular
regions coexisting on SOS. We also observe that the phase portraits are symmetric in x around
the mean radius (1+q)/2. We note that the chaotic component is always dominant in size over
the regular components and for certain regions of parameter q values the regular components
are practically negligible, so the jump map appears to become (almost) fully chaotic and
ergodic. One nice example where we were unable to locate a single regular island has the
parameter value q = 0.6. In figure 4 we plotted the relative area of regular SOS components
as a function of the parameter q.

In order to quantify the exponential instability of trajectories inside the chaotic component
of SOS, we have measured the average Lyapunov exponent λ (as described e.g. in [12]). The
result for λ as a function of q is shown in figure 5. We observe that the chaoticity as measured
by λ, being equal to the dynamical Kolmogorov–Sinai entropy, is always positive and is
increasing monotonically with q. This trend was somehow intuitively expected, as the number
of collisions within the jump increases with q. Namely, the larger number of collisions between
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Figure 3. Gallery of phase space portraits of the jump map F for different values of the parameter
q. Horizontal axis: x, vertical axis: vx . Each diagram shows 104 successive iterations of 400
different initial points distributed randomly over SOS.
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Figure 4. Numerical estimation of the total relative area of regular SOS components 1 − p, where
p is the relative area of the chaotic component of SOS, for the jump map is shown as a function
of the parameter q. The ratio is obtained by sampling 1000 random trajectories starting inside
the chaotic component over a phase space grid of size 1000 × 1000. The length of trajectories in
number of jumps was 106.

entry and exit sections implies less correlation between the angular momenta of the adjacent
cells meaning stronger integrability breaking.

Important fingerprints of dynamics, in many ways complementary to Lyapunov exponents,
are the time correlation functions. These reflect the mixing property of the system which
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Figure 5. Lyapunov exponent λ of the jump map F averaged over the dominating chaotic
component of SOS as a function of the parameter q. The average was computed from 1000
trajectories of length 105.

implies decay to equilibrium of an arbitrary initial phase space measure. The time correlation
functions are also directly related to transport, which is studied in the next section, through a
linear response formalism. We discuss the discrete time correlation function of the jump map
between two observables φ(x) and ψ(x), which is defined as

Cφ,ψ(τ, x) = lim
t→∞

∑t−1
k=0 φ(F(k)(x))ψ(F(k+τ)(x))∑t−1
k=0 φ(F(k)(x))ψ(F(k)(x))

. (3)

The correlation functions are normalized such that always, Cφ,ψ(0, x) ≡ 1, even for
observables which are not in L2(SL). In the following, we consider auto-correlation functions
of very regular observables such as the phase space coordinates, namely Cx,x and Cvx,vx

, and
the auto-correlation function of the time function CT,T which is even more interesting for two
reasons: (i) CT,T is directly related to particle transport as described in the next section, and
(ii) T is not in L2(SL) as discussed below. Numerical data presented in figure 6 strongly suggest
that the correlation function CT,T typically exhibits exponential decay ∼ exp(−const τ) for
most of the values of q, except that for small parameter values q < 0.3 the initial exponential-
like decay seems to turn into an asymptotic power-law decay ∼ t−const. On the other hand
the correlation decay of non-singular observables, such as Cx,x and Cvx,vx

, seems to behave
as a power law for all values of q. It is interesting to observe that the qualitative nature of
correlation decay seems to be quite different for different classes of observables such as x
compared to T. However, in all cases time correlation functions strongly decay which is a firm
indication of the mixing property of the serpent billiard on the chaotic component.

The time function T (x) is expected to have a singularity for vx → ±1 as it may take
arbitrarily long to traverse the semi-circular ring with a sufficiently small value of angular
momentum. It is straightforward to show that this is a square-root singularity

T (x, vx) ∼ (1 − |vx |)−1/2 |vx | ∼ 1. (4)

An example of the structure of the time function for q = 0.6 is shown as a density plot in
figure 7(a). Another quantity which can illustrate the dynamical behaviour of observable T is
the probability distribution P(T ) of times T (x) for a very long chaotic trajectory. Assuming
that the system is ergodic on the full SOS, the probability distribution P(T ) can be written in
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Figure 6. The average auto-correlation functions: 〈CT,T (x, τ )〉� (full curve), 〈Cx,x(x, τ )〉�
(dashed) and 〈Cvx,vx (x, τ )〉� (dots) as functions of the number of jumps τ . The calculation is
performed using trajectories of length 5 × 105 and averaged over 104 initial conditions x over
the chaotic SOS component. In the plot for q = 0.6 and q = 0.9 we insert the exponentials
exp(−0.050 8193τ) and exp(−0.002 341 54τ), respectively, in order to guide the eye. The noisy
plateaus indicate the level of statistical fluctuation.

terms of the constant invariant measure on SOS

P(t) =
∫

δ(t − T (x)) d2x. (5)

Singularity (4) implies the asymptotic form of the distribution

P(t) ∼ t−3 (6)

for large t. This asymptotic property does not essentially depend on the full ergodicity of the
map, as we find the same asymptotic behaviour by numerical simulation of P(t) for different
values of q as shown in figure 7(b). It is obvious that the only important condition for the
universal decay of P(t) is that the chaotic component should extend to the lines of singularity
vx = ±1. The distribution P(t) is very important, because it directly connects to the particle
transport properties of the channel that are discussed in the next section.

3. Transport properties

Here we would like to examine the transport properties along our billiard chain in the context
of the jump model. The basic cells are labelled with a non-negative integer n ∈ Z

+ starting
with n = 0 and counting forward to the right. The transported length is measured as the
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Figure 7. (a) Density plot of the time function on a logarithmic scale at q = 0.6 and (b) the
distribution P(t) of the values of the time function for different q indicated in the figure. The
thicker full straight line indicates t−3 decay.

number of traversed basic cells. This means that our length of travel is an integer but we
should keep in mind that the physical length of one basic cell in the direction along the chain
is 1 + q.

Let us prepare an ensemble of particles on the SOS SL of the zeroth basic cell, n = 0.
The phase space is generally mixed and let the dominating chaotic component be denoted by
� ⊂ SL. We observe that each invariant phase space component may have its own transport
properties and to obtain a clear picture of transport we have to test each component separately.
The transport on regular components (islands) of SOS is obviously ballistic since the islands
are transporting with a constant and sharply defined average velocity. Thus we concentrate
on the more nontrivial case of transport on the chaotic component, namely in the following,
we choose a uniform initial distribution of the particles over the leading chaotic component
�: µ(d2x) = d2x/vol(�).

The transport of an ensemble of particles is described using the probability distribution
P(n, t) of particles over the basic cells n ∈ Z

+ as a function of time t. Let us express this
distribution in terms of a jump map F(x) and the time function T (x). The time spent by a
particle to traverse m basic cells starting from the initial position x ∈ SL is calculated as

Tm(x) =
m−1∑
k=0

T (F(k)(x)). (7)

The probability distribution of a single particle with initial coordinate x over the basic cells
(labelled by n ∈ Z

+) at time t can be written straightforwardly as

P(n, t, x) =
∫ t

0
{δ(τ − Tn(x)) − δ(τ − Tn+1(x))} dτ. (8)

By averaging P(n, t, x) over an initial ensemble of particles, defined by

〈f (x)〉� :=
∫

�

µ(d2x)f (x) (9)

we obtain the distribution of particles over the cells

P(n, t) = 〈P(n, t, x)〉� =
∫ t

0
{pn(τ) − pn+1(τ )} dτ (10)
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where we are using the ensemble average distribution of times needed to traverse n basic cells,
denoted as pn(t),

pn(t) = 〈δ(τ − Tn(x))〉�. (11)

Let 〈•〉P denote an average over the spatial distribution P(n, t)

〈f (n)〉P =
∞∑

n=0

f (n)P (n, t). (12)

Our aim is to obtain the time-asymptotic (t → ∞) form of P(n, t) where only contributions
of far lying cells n � 1 are relevant. Since the auto-correlation functions in our model are
decaying very fast, in particular the relevant 〈CT,T (x, t)〉� (see the end of the previous section),
we may employ the central limit theorem and approximate the distribution of Tn, pn(t), in
terms of the distribution of T , p1(t) = 〈δ(t − T (x))〉�.

pn(t) = (p1 ∗ · · · ∗ p1︸ ︷︷ ︸
n

)(t) n � 1. (13)

This approximation is very useful, because we can obtain the whole distribution P(n, t) using
a single function p1(t) = P(t) that can be easily measured and is already plotted in figure 7(b).
In the limit n → ∞, we can treat the variable Tn as infinitely divisible [13] and the parameter
n as a continuous variable. Then we can approximate the finite difference in n in equation (10)
in terms of a derivative ∂/∂n and calculate P(n, t) as

P(n, t) ≈ − ∂

∂n

∫ t

0
pn(τ) dτ. (14)

The basic properties of the transport shall be described by the mean traversed length 〈n〉P
and the spatial spread of the initial ensemble σ 2

n = 〈n2〉P − 〈n〉2
P . The mean 〈n〉P can be

asymptotically, for t → ∞, exactly expressed by the formula

〈n〉P =
∫ t

0

∞∑
n=0

pn(τ) dτ. (15)

From the central limit theorem, we immediately obtain the mean velocity as the inverse mean
traverse time

v = lim
t→∞

〈n〉P
t

tmean = 1

v
=

∫ ∞

0
tp1(t) dt (16)

The average tmean, and the minimal time tmin to traverse a basic cell, as a function of q are
plotted in figure 8. The mean time tmean is almost linearly increasing with increasing parameter
q. This reflects the obvious fact that the travel becomes slower by narrowing the channel.
The fact that the linear growth of 〈n〉P is indeed given by velocity v is also demonstrated
numerically for q = 0.6 in figure 9(a). It is a little more tedious to obtain an analytical
approximation for the average spreading width σ 2

n (t) = 〈n2〉P − 〈n〉2
P .

Essentially, we need to control the growth of the second moment of distribution P(n, t).
This distribution is given by equation (14) in terms of pn(t) which may be asymptotically
expressed as a convolution of independent distributions p1(t) (13) assuming sufficiently fast
decay of temporal correlations as established numerically. As a consequence, pn(t) inherits
cubic singularity of p1(t), namely pn(t) ∝ t−3. This heuristic argument would suggest
marginally normal diffusion σ 2

n (t) ∝ t log t , not essentially connected to the strength of
correlation decay but simply as a consequence of singularity of the time function.

This observation can be formalized with a brief calculation. We stress that for large
times t → ∞, only cells with labels n ∼ vt � 1 contribute appreciably to the probability
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distribution P(n, t). In this regime we approximate pn(t) using (13), hence we can easily
write its Fourier transform as

p̂n(k) = (p̂1(k))n = exp(n log p̂1(k)) f̂ (k) =
∫ ∞

−∞
exp(ikt)f (t) dt. (17)

The asymptotics of p̂1(k) for k → 0 will determine the asymptotics for pn(t) for long times
t → ∞. Thus we write the local expansion of p̂1(k) around k = 0 explicitly taking into
account the known asymptotics in the time domain, p1(t → ∞) ∼ t−3, namely

log p̂1(k) = itmeank + σ 2
0 k2(α + log k) + O(k3) k > 0 (18)

where σ 2
0 and α are positive constants depending on the details of p1(t). Using equations

(18) and (17) and applying the inverse Fourier transform we find that the limiting distribution,
namely pn for large n, is given by the formula

pn(t) = 1

σt

g

(
t − ntmean

σt

)
σ 2

t = σ 2
0 n log n for n � 1. (19)
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where g(x) = 1√
2π

exp(−x2/2) is the standard Gaussian function. By inserting the above
expression (19) into the approximation of P(n, t) (14) and expanding in terms of parameter
n − vt we get the result

P(n, t) = 1

σn

g

(
n − vt

σn

)
σ 2

n = σ 2
0 v3t log(vt) for n � 1. (20)

From this analysis we predict that the diffusion of initial ensemble of particles will distribute
over the basic cells with dispersion growing as t log t . Thus we have shown analytically that
our serpent billiard exhibits marginally normal diffusion with a drift.

We have tested our analytical results by performing extensive numerical simulations. An
example of σ 2

n (t) for q = 0.6 is shown in figure 9(b). We stress that our numerical data are
indeed consistent with the marginally normal diffusion.

4. Summary and discussion

In this paper we have analysed a simple billiard chain, the so-called serpent billiard, with a
special dynamical property of strictly uni-directional classical motion. We have also proved
the uni-directionality of motion for a more general class of billiard channels with parallel
walls. The dynamics along the serpent billiard channel is described in terms of a variant of
a jump model [10], namely, the jump-Poincaré map between the surfaces of section of two
adjacent basic cells of the billiard, and the time function, i.e. the time needed to traverse the
basic cell as a function of the position on the surface of section. We have shown that the jump
map is chaotic with generally mixed phase space, where the relative size of the largest chaotic
component is generally increasing with decreasing channel width. The latter dependence is
not strictly monotonic, because of bifurcations of regular components, but for narrow channels
the chaotic component is typically largely dominant. For a considerable range of the parameter
(denoting the channel width) the jump map is even practically fully chaotic, ergodic, as no
detectable islands of regular motion have been found. This does not mean that the islands of
stability cannot exist for typical values of the parameter. We only wish to stress that it is easy
to find parameter values (such as the case q = 0.6 studied in the paper) for which all possible
islands of stability are undetectably small for numerical (experimental) purposes. Numerically
measured maximal Lyapunov exponent shows that the chaoticity on a chaotic component is
monotonically increasing with narrowing channel.

The transport of particles along the channel measured in the number of traversed basic
cells exhibits a marginally normal diffusion σ 2

n ∼ t log t (when the drift term is subtracted)
due to the square-root singularity of the time function. This singularity is a consequence
of parallel walls, or putting it in dynamical terms, it is due to a family of marginally stable
bouncing ball trajectories bouncing perpendicularly between the walls.

Besides its interesting and rather exotic dynamical properties, the model and its
generalizations may also be relevant for real world problems of transport, such as in optical
fibres or waveguides. These results may open even more interesting questions on the properties
of quantum or wave transport of classically uni-directional billiard channels. This is the subject
of a subsequent publication [14].
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Appendix. Explicit jump map and time function

Let the particle enter the basic cell at point x = (x, cos φ) ∈ SL and exit at point
x′ = (x ′, cos φ′) ∈ SR. Here we explicitly write the map G: x → x′, equation (1), and
the time function T (x). Due to conservation of the angular momentum within a fixed cell, we
have the relation

� = −x sin φ = x ′ sin φ′

so we just have to give an explicit formula for the map g: φ → φ′ and the time function t (φ).
Then the remaining relation to specify the full map G simply reads x ′ = −x sin φ/ sin g(φ).
Let us write some auxiliary variables

β = arcsin � γ = arcsin(�/q)

α′ = α + nδ n =
⌊

π − α

δ

⌋
where �x� is the largest integer not larger than x, and α and δ are determined for each case
separately below.

If � > q, the particle is only hitting the outside wall. Then, writing α = π − φ − β, δ =
π − 2β, we have

φ′ = (n + 1)δ − φ

t =
√

1 + x2 + 2x cos α +
√

1 + x ′2 + 2x ′ cos α′ + 2n cos β.

In the opposite case where � < q, writing δ = γ − β and �t =
√

1 + q2 − 2q cos δ, we have
to discuss two cases: (i) when the particle first hits the inner wall, φ < π/2

φ′ =
{

(n + 1)δ − φ n odd

2γ − π + nδ − φ n even

t =
√

q2 + x2 + 2xq cos α + n�t +

{√
1 + x ′2 + 2x ′ cos α′ n odd√
q2 + x ′2 + 2x ′q cos α′ n even

and (ii) when the particle first hits the outer wall, φ � π/2

φ′ =
{

(n + 1)δ − φ n odd

π − 2β + nδ − φ n even

t =
√

1 + x2 + 2x cos α + n�t +

{√
q2 + x ′2 + 2x ′q cos α′ n odd√
1 + x ′2 + 2x ′ cos α′ n even.

where α is equal to γ − φ in case (i) and π − φ − β in case (ii).
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